184 research outputs found

    Prevalence of Asymptomatic SARS-CoV-2 Infection in Children and Adults in Marion County, Indiana

    Get PDF
    Background and Objectives: Two community studies outside the US showed asymptomatic infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in adults, but not in children <10 years of age. In this study, we assessed the prevalence of asymptomatic SARS-CoV-2 infection in children and adults in Marion County, Indiana. Methods: Individuals living in Marion County with no symptoms of coronavirus 2019 disease (COVID-19) within seven days of enrollment were eligible for this cross-sectional household study. Study kits were delivered to the participant’s residence for self-swabbing, picked up by the study team, and tested by polymerase chain reaction (PCR) for SAR-CoV-2 infection. Results: Five hundred eleven nasal swabs were collected from 119 children and 392 adults ≥18 years of age. One participant (seven years of age) tested positive, for an overall study prevalence of 0.2% (95% CI 0, 0.6%). The participant had no known contact with a person with SARS-CoV-2 infection, and five family members tested negative for infection. The child and family members all tested negative for infection 10 and 20 days after the first test, and none developed symptoms of COVID-19 for 20 days after testing. Conclusions: Asymptomatic SARS-CoV-2 infection can occur in children <10 years with no known COVID-19 exposure. Large cohort studies should be conducted to determine prevalence of asymptomatic infection and risk of transmission from asymptomatic infection in children and adults over time

    Speech Processing Research Program

    Get PDF
    Contains an introduction and reports on five research projects.National Science Foundation Grant MIP 87-14969National Science Foundation FellowshipU.S. Air Force - Electronic Systems Division Contract F1 9628-89-K-0041U.S. Navy - Office of Naval Research Contract N00014-89-J-148

    Speech Processing Research Program

    Get PDF
    Contains an introduction and reports on five research projects.National Science Foundation FellowshipNational Science Foundation Grant MIP 87-14969U.S. Navy - Office of Naval Research Contract N00014-89-J-1489U.S. Air Force - Electronic Systems Division Contract F19628-89-K-0041National Science Foundation Fellowshi

    Advanced Television and Signal Processing Program

    Get PDF
    Contains an introduction and reports on two research projects.Advanced Television Research Progra

    Advanced Television and Signal Processing Program

    Get PDF
    Contains an introduction and reports on fifteen research projects.Advanced Television Research ProgramAdams-Russell Electronics, Inc.National Science Foundation Fellowship Grant MIP 87-14969National Science Foundation FellowshipU.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Air Force - Electronic Systems Division Contract F1 9628-89-K-004

    Digital Signal Processing

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on seventeen research projects.National Science Foundation FellowshipNational Science Foundation (Grant ECS 84-07285)National Science Foundation (Grant MIP 87-14969)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Scholarship from the Federative Republic of BrazilU.S. Air Force - Electronic Systems Division (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et I'Aide a la Recherche Postgraduate FellowshipSanders Associates, Inc.OKI Semiconductor, Inc.Tel Aviv University, Department of Electronic SystemsU.S. Navy - Office of Naval Research (Contract N00014-85-K-0272)Natural Sciences and Engineering Research Council of Canada, Science and Engineering Scholarshi

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on fifteen research projects.National Science Foundation FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation (Grant ECS 84-07285)Sanders Associates, Inc.U.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et /'Aide a la Recherche Postgraduate FellowshipCanada, Natural Science and Engineering Research Council Postgraduate FellowshipAmoco Foundation FellowshipFannie and John Hertz Foundation Fellowshi

    Intestinal Tumorigenesis Is Not Affected by Progesterone Signaling in Rodent Models

    Get PDF
    Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR) is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO) to the ApcMin/+ mouse, a model for spontaneous intestinal polyposis. PRKO-ApcMin/+mice exhibited no change in polyp number, size or localization compared to ApcMin/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis

    First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO

    Get PDF
    Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude

    Digital Signal Processing

    Get PDF
    Contains an introduction and reports on twenty research projects.National Science Foundation (Grant ECS 84-07285)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)National Science Foundation FellowshipSanders Associates, Inc.U.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028)Canada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et l'Aide a la Recherche Postgraduate FellowshipCanada, Natural Science and Engineering Research Council Postgraduate FellowshipU.S. Navy - Office of Naval Research (Contract N00014-81-K-0472)Fanny and John Hertz Foundation FellowshipCenter for Advanced Television StudiesAmoco Foundation FellowshipU.S. Air Force - Office of Scientific Research (Contract F19628-85-K-0028
    • …
    corecore